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Almtraet--An exact analytical study is presented for the thermocapiUary motion of two spherical droplets 
in a constant applied temperature gradient along their line of centers. The droplets may be formed from 
different fluids and have arbitrary radii. The appropriate energy and momentum equations are solved in 
the quasisteady situation using spherical bipolar coordinates and the droplet velocities are calculated for 
various cases. The interaction between droplets can be very strong when the surface-to-surface spacing 
approaches zero. The influence of the interaction, in general, is stronger on the smaller droplet than on 
the larger one. For the thermocapillary motion of two identical liquid droplets, both migrate faster than 
the velocity they would possess if isolated. For the specific case of two gas bubbles with equal radii, there 
is no particle interaction for all separation distances. A comparison between our exact results and 
predictions from a method of reflections is made. The asymptotic formula for the droplet velocities up 
to O(r~6), where rs2 is the center-to-center distance between the droplets, is found to underestimate the 
effect of droplet interactions; the error can be significant when the droplet surfaces are less than a quarter 
of the sum of the radii apart. 
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I N T R O D U C T I O N  

A droplet of one fluid, when placed in a second, immiscible fluid possessing a temperature gradient, 
will migrate in the direction of the gradient. This is due to the temperature-induced surface tension 
gradient at the droplet interface. The thermocapillary migration of droplets was first demonstrated 
experimentally by Young et al. (1959). They also theoretically calculated the migration velocity of 
a spherical droplet of radius a placed in an infinite fluid of viscosity )1, with a linear temperature 
distribution To (x) far away from the droplet. If the droplet is sufficiently small that effects of inertia 
and convection of energy are negligible, its velocity U (°) is related to the uniform temperature 
gradient VT® by the following expression: 

2 a /  &/ \  
U(o) = (2 + 3,*)(2 + k*) ~ ~ -~ -~)VT~,  [1] 

where d~/dT is the gradient of the interfacial tension (~) with the local temperature (T), and )1" 
and k* are the ratios of viscosity and thermal conductivity, respectively, between the internal and 
surrounding fluid. 

Through an exact representation in spherical bipolar coordinates, Meyyappan & Subramanian 
(1987) solved for the correction to [1] for the quasisteady migration of a gas bubble in the 
presence of an infinite planar surface due to a uniform temperature gradient which is aligned in 
an arbitrary direction with respect to the surface. They found that the plane surface exerts the 
most influence on the bubble when migration occurs normal to it, and the least influence in the 
case of parallel migration. In general, the boundary effects are relatively weak for the case of 
thermocapillary migration compared to the case of motion due to a body force such as that caused 
by :gravity. 

The axisymmetric problem of two migrating bubbles which are aligned with the undisturbed 
temperature gradient was solved by Meyyappan et al. (1983) using bipolar coordinates, while the 
case of two arbitrarily oriented bubbles was considered by Meyyappan & Subramanian (1984) 
using a far-field approximate technique. The more general case of the motion of two arbitrarily 
oriented fluid droplets due to the Marangoni effect has been analyzed by Anderson (1985) using 
a method of reflections. Corrections to [1] due to droplet interactions were determined in a power 
series lira2 up to O(r~) ,  where r~2 is the center-to-center distance between the droplets. Anderson 
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also used the results for two-droplet interactions to obtain the mean droplet velocity in a bounded 
suspension to leading order in the droplet volume fraction. An important result of the analyses 
by Meyyappan et al. (1983, 1984) and Anderson (1985) is that the interaction between two droplets 
is asymptotically of O(r~ 3) rather than O(r~) ,  as for the interaction between two Stokeslets 
(Happel & Brenner 1983); hence, the correction to [1] due to droplet interactions in thermocapillary 
migration is relatively weak compared to the interaction effects expected in motion driven by 
gravitational force. 

Since the effect of droplet interactions on thermocapillary motion in general is weak unless the 
droplets are nearly touching, it is particularly important to understand how [1] will be corrected 
if the gap thickness between the droplets approaches zero. However, when the droplets are 
close together, the series solution generated from the method of reflections becomes a poor 
description of droplet interaction effects, due to very low convergence characteristics. In the 
present work, our objective is to obtain an exact solution to the quasisteady problem of 
thermocapillary motion of two fluid droplets along their line of centers in the absence of gravity. 
The droplets may be formed from different fluids and have unequal radii, and the undisturbed 
temperature gradient is constant over length scales comparable to their center-to-center spacing. 
The steady-state energy and momentum equations applicable to the system are solved by using the 
bipolar coordinates and the streamlines for various cases are presented. Our numerical results for 
the droplet velocities compare favorably with the formulas derived analytically from the method 
of reflections for the cases of large to moderate particle separations. It is found that the effect of 
droplet interactions can be severely underestimated by the method of reflections when the droplets 
are almost in contact. 

ANALYSIS 

We consider the thermocapillary migration of two spherical droplets of different fluids along their 
line of centers in a third infinite fluid medium. All of the fluids are assumed to be Newtonian and 
incompressible. A linear temperature field To (x) with a uniform thermal gradient Eooe~ (equal to 
VT~ ) is prescribed in the fluid far away from the pair of droplets; e~ is a unit vector in the cylindrical 
polar coordinate system (p, ~b, z). The droplets may differ in radius and in physical properties, but 
are assumed to maintain their spherical shape. Our purpose here is to determine the correction to 
[1] for one droplet due to the presence of the other in the temperature and flow fields. 

For convenience in satisfying the boundary conditions at droplet interfaces, an orthogonal 
curvilinear coordinate system (@, ~, ~b), known as spherical bipolar coordinates (shown in figure 1), 
is utilized to solve this problem. This coordinate system is related to cylindrical polar coordinates 
by the following relation in any meridian plane q9 = const (Morse & Feshbach 1953; Happel & 
Brenner 1983): 

c sin ~k [2a] 
P = cosh ~ - cos ~k 

and 

c sinh 
z = [2b] 

c o s h  ~ - c o s  ~'  
where c is a characteristic length in the bipolar coordinate system which is > 0. The coordinate 
surfaces ¢ = const correspond to a family of non-intersecting spheres whose centers lie along the 
z-axis. Two spheres external to each other are chosen to be ~ = ~1 (with ~1 > 0) and ~ = ~2 (with 
~2 < 0), and the sphere radii a~ and a2 as well as the distances of their centers from the origin d, 
and d2 are given by 

and 

a, = c cosechl ¢, [ [3] 

d, = c c o t h  I ¢,1, 

for i = 1 or 2. The center-to-center distance between the particles, rt2, equals (d, + d2). 

[4] 
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Figure 1. Geometric sketch for the motion of two spheres. 

To determine the migration velocities of the two droplets, it is necessary to ascertain the 
temperature and velocity distributions. 

Temperature distribution 
When the migration velocities of the two droplets are not identical, the transport of momentum 

and energy is inherently unsteady. However, the problem can be considered quasisteady if P6clet 
and Reynolds numbers are small'. The energy equation governing the temperature distribution T(x) 
for external fluid of constant thermal conductivity k is Laplace's equation: 

V 2T = 0. [5a] 

For the two droplets, one has 

V2T~ = 0, i = 1 or 2, [5b] 

where Tl (x) and T~ (x) are the temperature fields inside droplets 1 and 2, respectively. The boundary 
conditions require that the temperature and the normal component of heat flux be continuous at 
the droplet interface and that the temperature field far away from the droplets approach the 
undisturbed values. Thus, 

= {,: T = T~, [6a] 

OT ~Tj 
k ~ = kt ~-~-, [6b] 

(p  2 Jr Z 2)1/2"* GO : T--,T~=E~z, [6c] 

for i = 1 or 2; k, and k2 are the thermal conductivities of the internal fluids, which are assumed 
to be independent of temperature. 
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A general solution to the Laplace equation [5a] suitable for satisfying these boundary conditions 
is (Morse & Feshbach 1953) 

T=cE~(cosh¢-# )  I/2 ~ [A.cosh(n +½)~ + B. sinh(n +½)~]e.(#)+E~z, [7a] 
n=0 

where P. is the Legendre polynomial of  order n and for brevity we have put # = cos ~,, Boundary 
condition [6c] is immediately satisfied by a solution of this form. Because the temperature is finite 
for any position in the interior of  each droplet, the solution to [5b] can be expressed as 

7',. = cE~(cosh ~ _#)1/'2 ~ Ci n exp[ -  (n + ½)JCJ]e.(#) + E z, [7b] 
n=0 

for i = 1 or 2. The coefficients A., B., C1. and C2. in [7a,b] are to be determined using [6a,b]. 
Utilizing the expansion, which can be derived using the generating function of the Legendre 

polynomials, 

cosh ~ sinh 2 
(cosh ~ - #)1/2 (cosh ¢ - #)3/2 =x~ ~ expt-(n +½)]~1] 

n = 0  

x [cosh ~ - (2n + 1)sinh[ ~ IIP.(#) [8] 
and the recurrence relations of the Legendre polynomials, one can apply the boundary conditions 
[6a,b] at the droplet interfaces to the general solution [7a,b] to yield four algebraic recursion 
formulas, as shown in table 1. In table 1, k* = ki/k is the ratio of thermal conductivity between 
the internal and surrounding fluid. The four formulas represent a group of infinite coupled 
equations for the unknown coefficients A., B., C~. and C2.. Because these coefficients should 
individually approach zero as n ~ ~ for the temperature field [7a,b] to remain bounded, they can 
be determined by solving the first m sets of the four recursion equations, provided that m is 
sufficiently large that all Am+l, Bin+l, Cw. + ~) and (?2(,.+ 1) are negligible. 

Fluid velocity distribution 

With knowledge of the solution for the temperature field, we can now proceed to find the fluid 
velocity distribution. Due to the low Reynolds numbers encountered in thermocapillary motions, 
the fluid velocity inside and outside the droplets is governed by the quasisteady fourth.order 
differential equation for viscous axisymmetric flows: 

E4~ = 0, [9a] 

E4~i = 0, i = 1 or 2, [9b] 

where ~Yi and ~ are the Stokes stream functions for the flow inside droplet i and for the 
external flow, respectively. The operator E 2 assumes the following form in spherical bipolar 
coordinates: 

c3 [(cosh ~ - #) ~ ] } .  [10] E2 -=- c°sh ~ - # {~-~ [(c°sh ~ - #) ~-~ ] + (1 - #2) ~-~ c 2 

Table 1. Recursion formulas  for the evaluation of  the coefficients in [7a, b] (both formulas  are valid 
for i - -  1 or  2) 

C,. exp[ - (n 4- ½)l ~,l] = A.  cosh(n + ½)~, + B. sinh(n + ~)~ 

+!)[sinh(n + 3)¢J + ~k,*  cosh(n + ~)£, ]A.+, + (n +l)[cosh(n + -~)¢i +k ? sinh(n + 3) I ~[]B. +, (n 
L- 

+ ~)~j + k, sinh(n + ~)l ¢,1]( 2n + 1)cosh ~}B. - {(1 - k,.* )sinh ~i sinh(n + ½)~i + [cosh(n i , 

- + k , "  , 

= 2x/~(1 - k~*)[cosh ¢ , -  (2n + 1)sinh I¢,llexpi-(n + ½)1¢,11 
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The stream function ~v (or ~v~) is related to the velocity field v (or v~) by 

(cosh ~ - cos q,)' 0~' 
v~ = c 2 sin ~ 0~b 

and 

[ l l a ]  

(cosh ~ - cos ~)2 0~' [llb] 
v, = c 2 sin ~ 0~ " 

The interfacial tension is temperature dependent, so the tangential stress discontinuity at the 
droplet interfaces is 

= ~ ' v  ~=~,: Vsy,=(I -nn) .V~,  3T_,T, [121 

where 7~ is the interfacial tension for the surface of droplet i, n is the unit normal vector at the 
droplet surface pointing into the surrounding fluid and I is the unit tensor. Note that O~,~/OT is 
assumed constant on the scale of radius of droplet i, and V, T can be determined from [7a,b]. The 
boundary conditions for the velocity fields are: 

= ~i: v = vi ,  [13a] 

e~. (v - U~) = 0, [13b] 

(I - e~ e~)e~:(~ - ~ )  = - V ,~ , ,  [13c]  

(p2 + z2)1t2~o0: v ~ 0, [13d] 

for i = 1 or 2. Here, x (=  q [(Vv + (Vv)a'J) and ~ are viscous stress tensors for the external flow and 
the flow inside droplet i, respectively; e~ is a unit vector in bipolar coordinates; and U~ (=  U~e~) 
and U2 (=  U2e,) are the instantaneous thermocapillary velocities of the two droplets to be 
determined. 

Because the droplets are freely suspended in the surrounding fluid, the net force exerted by the 
fluid on the surface of each droplet must vanish: 

V=f!d~n.ndS=O, [14] 

where II is the total stress tensor. For the axisymmetric motion considered in this work, one can 
evaluate U~ and U2 by merely satisfying constraint [14] after solving [9a,b] and [13a-d]. 

A general solution of [9a,b] satisfying boundary condition [13d] and the requirement of finite 
velocity in the interior of each droplet is (Stimson & Jeffery 1926; Happel & Brenner 1983) 

~' = c~(cosh ~ - ~)-~/~ ~ [a. cosh(n --O~ + b. s i n h ( n  - ½)~ 
n = l  

- t / 2  + c. cosh(n + 2l)~ + d~ sinh(n + 2)~]G.+ ~ (/~) [15a] 

and 

for i = 1 or 2. G;~+/~(l~) is the Gegenbauer polynomial of order n + 1 and degree - 1/2, which is 
related to Legendre polynomials by 

2n + 1 [16] 
The coefficients a., b., c., d~, e~ and fb, are to be determined from boundary conditions given 

by [13a-c] using the recurrence relations of the I~gendre polynomials as well as expansions derived 
from the generating function of  the Legendre polynomials. The procedure is str~ghtforw~d but 
tedious and the results, which consist of eight algebraic recursion formulas, are listed in table 2. 
In table 2, q* = qt/q is the ratio of viscosity between the internal and continuous fluid. Because 
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Table 2. Recursion formulas for the evaluation of the coefficients in [15a.b] (all formulas are valid for i = 1 or 2) 

a. cosh(n - ½)~, + b. sinh(n - ½)~, + c. cosh(n + 3)¢, + d. sinh(n + 3)~, 

- " ~  U,n(. + 1)~ ~exp[-(n-~)[~'[l 
2 [ 2n - 1 

exp[- (n +3)[~,1!~ 
2n +3  ) 

e~.exp[-(n ½)[¢,[]+f. exp[-(n +3)1¢,11= ~/~ U~n(n + _ l)~e xpt-(n_ 7))1¢,1] expt-(n + 3)1¢,t]~ 
- 2 -  ( 2n - 1 2n + 3 ) 

¢' {(n - ½)e~ exp[- (n - ~)1 ¢,1] + (n + ~)f,. exp[- (n + ~)l ¢,[]} 

= (n - ½)[a. sinh(n - ~)¢, + b. cosh(n - ½)¢] + (n + 3)[c. sinh(n + 3)¢~ + d~ cosh(n + ~)~] 

-cosh ~,{(n - ½)2[a. cosh(n - 1)~, + b. sinh(n - ½)¢z] + (n + 3)2[G cosh(n + ~)~, + d. sinh(n + ~)~,]} 

+ ~ n ~ -  [a.+ ~ cosh(n +1)~,+ b.+~ sinh(n + ½)G] + [c.+] cosh(n +~)~,+ d~+, sinh(n + ~)~,] 

(n - ~)2(n + 1)[a " - '  cosh(n - 3)~ + b._, sinh(n - ~)¢~] -~ (n + ½):(n + + 2n - 1 2n - 1 1) [c. _ i cosh(n + ½)~ + d._ i sinh(n + ½)~] 

- 3 sinh ~{(n - I)[a. sinh(n - ½)~, + b. cosh(n - ½)¢~] + (n + 3)[c. sinh(n + ~)¢j + d. cosh(n + ~)~]} 

- q*I - cosh ¢,{(n - ½)2e~ exp[- (n - I)I ¢,1] + (n + ~)2f. exp[-(n + ~)l ell ]} 

(, + ½)~, (,, + ~)~, 
+ ~ f ~ 3  e,(.+,)exp[-( n + ~)l~,l] + ~ T L . + ,  exp[-(n +~)1¢,1] 

(n - 3)2(n + 1) 3 + (n + ½):(n + l!f~._ ,)exp[_(n + 
+ 2n - 1 ei(.-I)exp[ - ( n  - i)]~d] 2n - 1  

+ ~ sinh [ %]{(n - ½)e~ expt-(n - I)1 ¢,ll + (n + 3K. exp[-(n + ~)l ¢' I l}] 

x/2 • ¢)'expt-(n _-3)1 ¢,[] expt-  (n + ~)l ¢,1]~ 
- ~ (q~ - l )U~n(n+l )cosh  ( 2 n - I  2 n + 3  ) 

0~, Eoo c ../2n (n 1" ~' + ~ -  + ) ~ { e x p t - ( n  -½)t¢ , l ] -expt- (n  +3)[¢,]]} 

&v,E~c( n(n + 1) n(n + 1) exp[-(n + ~)1%11 
+ O T ~ -  l 4n--2  c,(. , ) e x p [ - ( n - - ½ ) l ¢ , l ] + ~ - - 6 - q . + ,  ) 

+n(n + l)cosh~ic~.exp[-(n +½)1~i1] n(n + 1)(n +2) 2n + 3 c,(.+,)expt-(n + ~)l¢,l] 

(n -- 1)n(n + 1) } 
2n -- 1 c,(. _ ,) exp[-(n - ½)1 ¢,[] 

the u n k n o w n  coefficients a . ,  b . ,  c . ,  d . ,  el . ,  e2., f l .  an d  f2. b e c o m e  small  with large n, s imul taneous  
so lu t ion  o f  these eight recurs ion  equa t ions  for  the first m sets yields 8m coefficients, thereby  
de te rmin ing  the Stokes  s t r eam func t ion  for  fluids acco rd ing  to [15a,b]. 

By in tegra t ion  o f  the stress vec tor  on  the ou te r  side o f  the in terface  using the first pa r t  o f  [14], 
the d r a g  force o p p o s i n g  the t he rmocap i l l a ry  m o t i o n  o f  the d rop le t  at  ~ = ~ is (S t imson  & Jeffery 

1926) 

F, = - 2x/~Tzqc ~ (a. + b. + c. + d.);  [lVa] 
n = l  

a nd  for  the d rop le t  at  ~ = Cz, 

& = - 2x/~r~t/c ~ (a.  - b. + c. - d.). [178] 
n = l  

Equivalent  formulas expressed in terms o f  the coefficients for  internal stream functions can be 

obtained easily. 

Drople t  velocities 

Since the net  force ac t ing  on  each  d rop le t  vanishes  to fulfill the r equ i r emen t  o f  [14], we have  

F l = 0  and  F 2 = 0 .  l iSa,b]  
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To determine the instantaneous thermocapillary velocities U1 and U2 of the droplets, the above two 
equations incorporated with [17a, b] must be solved. The result can be expressed as 

UI = MH U/°) + gl2 U[ °) [19a] 

and 

U2 = M2, Ut °) + M22 U~ °), [19b] 

where U~ °) and U[ °) are the droplet velocities that would exist in the absence of the other and are 
computed from [1]. The numerical results for the mobility coefficients MH, MI2, M21 and M22 as 
a function of tl~, k*, tl~, k* ,a2/a~ and the separation parameter 2, defined as (a~ + a2)/r~2, have 
been determined and are presented in the following section. Note that MH = M22= 1 and 
M12 = M21 = 0 when the two droplets are separated by an infinite distance (i.e. 2 = 0). 

RESULTS AND DISCUSSION 

The coefficients of the temperature distribution [7a,b] and the stream function [15a,b] in the 
present quasisteady problem have been calculated for various values of r/*, r/~', k*, k~', a2/al and 
2 using a digital computer. For the case of a2/al = 5.0 and 2 = 0.995, m equal to about 280 was 
sufficiently large that the (m + 1)th terms of these coefficients are negligible and an increase in m 
does not alter the calculated values appreciably. 

Streamlines 
The distortion of the velocity field due to interactions between two fluid droplets in thermocap- 

illary motion is illustrated graphically in figures 2-6. In each case, streamlines in a meridian plane 

Figure 2. Streamlines for the system ~ '  ffi k~' ffi t/~ = k~ = t, 
~yl /OTfOy, /aT ,  a,/atffi 1.0 and 2 •0.5. ~/c'Ul°): 1, 

-0.01; 2, -0.03; 3, -0.06; 4, -0.09; 5, -0.12. 

Figure 3. Streamlines for the system r/* =k~ ~k~  ffi 1, 
7" = 10, Oy~/~T = OT2/OT , a,/a] = 1.0 and 2 = 0.5. ~/c2Ul°): 
I, -0.0125; 2, -0.0375; 3, -0.05; 4, -0.075; 5, -0.125. 
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are depicted. Figures 2-5 show the situation when the two spheres have identical radii and the 
distance between the interfaces is equal to the sum of their radii. The streamlines for two identical 
droplets with the same viscosity and thermal conductivity as the surrounding fluid are drawn in 
figure 2. Similar to that for two equal-sized gas bubbles (Meyyappan et al. 1983), the contour 
pattern shows equivalent local recirculations in the vicinity of each sphere and a global recirculation 
pattern far away from the droplets. These balanced recirculatious will be distorted if the two 
droplets differ in viscosity, in thermal conductivity or in the variation of interfacial tension with 
temperature, as shown in figures 3-5. It can be found that the spacing between streamlines in the 
droplet with smaller viscosity,' smaller thermal conductivity or more sensitive interfacial tension 
variation with temperature is narrower and the local fluid recirculation is stronger than that for 
the other droplet, which shows a larger migration velocity for the former droplet. These results 
are consistent with the prediction of [1]. 

The situation of two spheres with unequal radii is illustrated in figure 6, which corresponds to 
the case of a2/am = 2.0 and )t = 0.5. Again, as expected from [1], the larger droplet migrates faster. 
It is noted that the local recirculation in the vicinity of the larger droplet is substantial, whereas 
it might disappear in the vicinity of the smaller droplet. As the radius ratio becomes large, the 
velocity field is dominated by the large droplet, with the smaller droplet introducing only local 
perturbations. 

Mobility coefficients 
The numerical results for the mobility coefficients MH and Mn, defined by [19a,b], for the 

case of two droplets of the same fluid with various values of t/*, k*, a2/am and ~ are presented in 
tables 3-6. Note that M2m and M22 for the case of a2/am = 0.5 are equal to Mn and MH for the case 
of a2/al = 2.0, respectively. If both droplets are equal in radius, they will move at the same velocity 
because M2m = Mm2, M22 = MH and U[ °) = Ut °). As expected, the results illustrate that the droplets' 
interaction decreases rapidly, for all values of r/*, k* and a2/a~, with an increase in the gap between 
them (i.e. decreasing ;[). However, the interaction between droplets can be very strong when the 
surface-to-surface spacing gets close to zero. The effect of the interaction, in general, is far greater 
on the smaller of the two droplets than on the larger one (Mn increases dramatically with increasing 
a2 ~at ) for any given values of r/*, k* and ~.. The larger droplet is hardly influenced by the presence 
of the smaller one for cases of radius ratio > 2.0, unless they are very close together. 

Using a method of reflections, Anderson (1985) obtained the mobility coefficients for the coupled 
therrnocapillary motion of two droplets of the same fluid oriented arbitrarily with the temperature 
gradient. For the axisymmetric motion considered here, his results give 

{1 -k* '~ fa2 '~3  r / l - k * \  2 3 ( 2 + 5 ~ ! * ' ~ ] ~ + O ( r i 1 8  ) 
[20a] 

and 

MI2.~_ (a_~2~3 [ 2 ( 1 - k * ' ~  9 ( 1 - k * ' ~ ( 2  + 3tl*'~]a~a 3, 
\ , , 2 / - L  + ° ( ' a ' )  [20b] 

The mobility coefficients Mn and Mn calculated from the above asymptotic solution, with the 
O(rf i  8) term neglected, are also listed in tables 3-5 for comparison. It can be found that the 
asymptotic formulas [20a,b] from the method of reflections agree very well with the exact results 
as long as the droplet surfaces are more than 2/3 of the sum of radii apart (i.e. ~ ~< 0.6). However, 
accuracy begins to deteriorate, as expected, when the droplets are closed together (say, ~ i> 0.8). 
Formula [20b] always underestimates the droplets' interaction. 

Note that, as illustrated in table 3, both the exact and the asymptotic solutions predict the 
following relation for the case of two gas bubbles (~/*= 0, k * =  0) with arbitrary radii: 

M l l  + MI2 = 1. [21] 

For the thermocapillary motion of two bubbles of different sizes, the one with the smaller radius 
(i.e. smaller velocity) is enhanced by the motion of the other, which is retarded at the same time 
by the motion of the former one. In view of this, it is not surprising that if the bubbles are of equal 
size (so Ut °) = U~°)), both will move with exactly the velocity that would exist in the absence of one 
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of the droplets for any value of 2 (Meyyappan et al. 1983; Anderson 1985). It should be noted that, 
while there is no net interaction between the bubbles, there are certainly perturbations to the flow 
field due to their proximity. 

For the specific case of two identical liquid droplets with equal radii tables 4-6 give the relation 
MII q-MI2 > 1, which indicates that each droplet moves faster than its undisturbed velocity U (°~. 
This enhancement in droplet velocity is similar to the observation when the driving force for droplet 
motion is gravity (Rushton & Davies 1973, 1978). When the ratio of thermal conductivity between 
the internal and surrounding fluid, k*, becomes larger, M~2 decreases and M H + M~2 increases. On 
the contrary, M~2 increases and Ml~ + M~2 decreases if r/* is increased. Note that, when the two 
liquid droplets differ in size, the one with the larger radius (i.e. larger velocity) can be slowed down 
to a speed less than its undisturbed value. 

Numerical results of MH, M~2, M2~ and M22 for a typical case of two droplets of different fluids 
are given in table 7: again, the droplets' interaction is stronger when they are closer together. 
The effect of interaction is also greater on the small droplet than on the larger one. In general. 
the droplet with the smaller velocity is speeded up by the motion of the other droplet. 

For the motion of two spherical droplets on which a body force (e.g. a gravitational field) is 
imposed along their line of centers, the exact results of the droplet velocities were developed using 
bipolar coordinates by Rushton & Davies (1973, 1978). Although their theoretical analysis is 

Table 7. The exact solution of the mobility coefficients MN, M~2, M2~ and 
M22 (defined by [19a,b]) for the thermocapillary motion of two droplets 

(~* = l ,k* = 1 ,~ '  = l ,k~ = 10) 

a2/a 1 ;'. Mlt Mi2 M21 M22 

0.5 0.2 1.000441 0 . 0 0 0 2 9 6  0 . 0 0 2 3 6 8  0.999996 
0.4 1.003322 0 . 0 0 2 3 7 3  0 . 0 1 8 8 0 7  0.999726 
0.6 1.009394 0 . 0 0 8 1 2 2  0 . 0 6 2 6 0 2  0.996146 
0.8 1.013750 0 . 0 2 1 7 0 0  0 . 1 5 1 3 2 5  0.967849 
0.9 1.007501 0 . 0 3 9 5 7 1  0 . 2 3 8 0 6 2  0.904504 
0.95 0 . 9 9 3 3 6 2  0 . 0 6 2 1 0 5  0 . 3 2 5 6 3 4  0.814625 
0.97 0 . 9 7 9 8 2 5  0 . 0 8 0 5 7 6  0 . 3 9 1 3 6 4  0.740148 
0 . 9 8  0 . 9 6 8 1 6 8  0 . 0 9 5 4 9 4  0 . 4 4 3 1 3 4  0.680392 
0.99 0 . 9 4 8 0 7 5  0 . 1 1 9 9 2 7  0 . 5 2 7 3 4 6  0.583586 
0.995 0.929514 0 . 1 4 1 5 1 5  0 . 6 0 2 0 4 0  0.499117 

1.0 0.2 1.001495 0.000250 0 . 0 0 1 0 0 0  0.999995 
0.4 1.011647 0 . 0 0 8 0 1 1  0 . 0 0 7 7 7 9  0.999642 
0.6 1.036258 0 . 0 2 7 5 0 5  0 . 0 2 4 8 1 5  0.995552 
0.8 1.068409 0 . 0 7 3 4 7 3  0 . 0 5 7 8 5 7  0.969778 
0.9 1.065309 0 . 1 2 9 1 6 1  0 . 0 9 7 6 2 9  0.922597 
0.95 1 . 0 2 9 1 1 7  0 . 1 9 0 9 2 7  0 . 1 5 1 3 6 6  0.863894 
0 . 9 7  0 . 9 8 8 1 5 3  0 . 2 3 7 0 4 4  0 . 1 9 8 8 6 4  0.818674 
0.98 0 , 9 5 1 0 2 8  0 . 2 7 2 3 4 5  0 . 2 3 9 0 9 4  0.783735 
0.99 0 , 8 8 5 2 1 3  0 . 3 2 7 5 6 7  0 . 3 0 7 8 7 8  0.728810 
0.995 0 . 8 2 3 4 7 5  0 . 3 7 4 4 7 3  0 . 3 7 1 0 4 4  0.682027 

2.0 0.2 1.003552 0.002370 0 . 0 0 0 2 9 4  0.999996 
0.4 1.028179 0 . 0 1 8 9 8 0  0 . 0 0 2 1 9 1  0.999765 
0.6 1.092469 0 . 0 6 4 8 0 2  0 . 0 0 6 4 7 3  0.997347 
0.8 1.198824 0 . 1 6 6 1 9 6  0 . 0 1 3 3 2 9  0.984597 
0.9 1.231839 0 . 2 7 2 2 6 6  0 . 0 2 4 7 4 2  0.964913 
0.95 1 . 1 8 2 5 8 4  0 . 3 7 4 4 9 8  0.046660 0.942951 
0.97 1 . 1 0 7 6 7 2  0 . 4 4 4 2 5 6  0 . 0 6 9 1 6 4  0.926903 
0 . 9 8  1 . 0 3 4 5 7 3  0 . 4 9 5 0 8 4  0 . 0 8 9 4 5 7  0.914810 
0 . 9 9  0 . 8 9 9 4 6 4  0 . 5 7 1 3 4 9  0 . 1 2 5 7 1 2  0.896151 
0.995 0 . 7 6 9 4 7 0  0.633810 0 . 1 6 0 0 7 8  0.880487 

5.0 0.2 1.006943 0 . 0 0 4 6 3 0  0 . 0 0 0 0 3 6  0.999999 
0.4 1.055485 0 . 0 3 7 0 4 6  0 . 0 0 0 2 6 1  0.999946 
0.6 1.186399 0 . 1 2 5 4 0 6  0 . 0 0 0 6 5 1  0.999430 
0.8 1.430383 0 . 3 0 4 4 5 7  0 . 0 0 0 7 8 3  0.997052 
0.9 1.564555 0 . 4 5 5 4 1 7  0.002112 0.992157 
0.95 1 . 5 5 1 4 4 7  0 . 5 7 6 7 7 3  0 . 0 0 5 7 6 4  0.991492 
0.97 1 . 4 6 2 4 4 7  0 . 6 4 8 0 9 6  0 . 0 1 0 4 1 3  0.989506 
0.98 1 . 3 5 9 0 2 7  0 . 6 9 6 4 5 7  0 . 0 1 5 0 8 2  0.988000 
0.99 1 . 1 4 7 9 6 6  0 . 7 6 4 9 7 1  0 . 0 2 4 2 0 3  0.985692 
0.995 0 . 9 3 0 8 0 6  0 . 8 1 8 4 7 4  0 . 0 3 3 5 2 0  0.983786 
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legitimate, some typographical errors occur in their formulas for droplet interactions. The correct 
mobility coefficients M ,  and M~2 for droplet movement in a gravitational field are also presented 
in table 6 for comparison. Clearly, the interaction effect in thermocapillary motion is much weaker 
(smaller in Mr2) than for motion under gravity. This result is consistent with the predictions by 
Meyyappan & Subramanian (1984) and Anderson (1985). 

CONCLUSIONS 

The thermocapillary motion of two fluid droplets along their line of centers has been examined 
in this work. The temperature and velocity fields are solved using bipolar coordinates and the 
droplet velocities are obtained for various values of the fluid properties, droplet sizes and separation 
distance. It is found that the interaction between droplets can be very strong when their gap 
thickness approaches zero. The asymptotic formula [20b] generated from the method of reflections 
always gives too small an effect of droplet interactions, and the error can be significant when the 
droplets are near contact. The influence of the interaction is far greater on the smaller of the two 
droplets. The droplet with the smaller velocity is enhanced by the motion of the other, which can 
be retarded simultaneously by the motion of the first droplet. For the special case of two identical 
liquid droplets, both migrate with the same velocity, which is larger in magnitude than that which 
would exist in the absence of one of the droplets. There is no interaction between two bubbles of 
equal size. In general, the effect of droplet interactions on thermocapillary motion is much weaker 
than that on the motion in a gravitational field. 
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