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Abstract—An exact analytical study is presented for the thermocapillary motion of two spherical droplets
in a constant applied temperature gradient along their line of centers. The droplets may be formed from
different fluids and have arbitrary radii. The appropriate energy and momentum equations are solved in
the quasisteady situation using spherical bipolar coordinates and the droplet velocities are calculated for
various cases. The interaction between droplets can be very strong when the surface-to-surface spacing
approaches zero. The influence of the interaction, in general, is stronger on the smaller droplet than on
the larger one. For the thermocapillary motion of two identical liquid droplets, both migrate faster than
the velocity they would possess if isolated. For.the specific case of two gas bubbles with equal radii, there
is no particle interaction for all separation distances. A comparison between our exact results and
predictions from a method of reflections is made. The asymptotic formula for the droplet velocities up
to O(r;;®), where ry, is the center-to-center distance between the droplets, is found to underestimate the
effect of droplet interactions; the error can be significant when the droplet surfaces are less than a quarter
of the sum of the radii apart.
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INTRODUCTION

A droplet of one fluid, when placed in a second, immiscible fluid possessing a temperature gradient,
will migrate in the direction of the gradient. This is due to the temperature-induced surface tension
gradient at the droplet interface. The thermocapillary migration of droplets was first demonstrated
experimentally by Young et al. (1959). They also theoretically calculated the migration velocity of
a spherical droplet of radius a placed in an infinite fluid of viscosity #, with a linear temperature
distribution T, (x) far away from the droplet. If the droplet is sufficiently small that effects of inertia
and convection of energy are negligible, its velocity U® is related to the uniform temperature
gradient VT, by the following expression:

2 a oy
©_ af_or
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where 9y /0T is the gradient of the interfacial tension (y) with the local temperature (T), and n*
and k* are the ratios of viscosity and thermal conductivity, respectively, between the internal and
surrounding fluid.

Through an exact representation in spherical bipolar coordinates, Meyyappan & Subramanian
(1987) solved for the correction to [1] for the quasisteady migration of a gas bubble in the
presence of an infinite planar surface due to a uniform temperature gradient which is aligned in
an arbitrary direction with respect to the surface. They found that the plane surface exerts the
most influence on the bubble when migration occurs normal to it, and the least influence in the
case of parallel migration. In general, the boundary effects are relatively weak for the case of
thermocapillary migration compared to the case of motion due to a body force such as that caused
by .gravity. .

The axisymmetric problem of two migrating bubbles which are aligned with the undisturbed
temperature gradient was solved by Meyyappan et al. (1983) using bipolar coordinates, while the
case of two arbitrarily oriented bubbles was considered by Meyyappan & Subramanian (1984)
using a far-field approximate technique. The more general case of the motion of two arbitrarily
oriented fluid droplets due to the Marangoni effect has been analyzed by Anderson (1985) using
a method of reflections. Corrections to [1] due to droplet interactions were determined in a power
series 1/ry, up to O(r3®), where r,, is the center-to-center distance between the droplets. Anderson
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also used the results for two-droplet interactions to obtain the mean droplet velocity in a bounded
suspension to leading order in the droplet volume fraction. An important result of the analyses
by Meyyappan et al. (1983, 1984) and Anderson (1985) is that the interaction between two droplets
is asymptotically of O(r;’) rather than O(ry;'), as for the interaction between two Stokeslets
(Happel & Brenner 1983); hence, the correction to [1] due to droplet interactions in thermocapillary
migration is relatively weak compared to the interaction effects expected in motion driven by
gravitational force.

Since the effect of droplet interactions on thermocapillary motion in general is weak unless the
droplets are nearly touching, it is particularly important to understand how [1] will be corrected
if the gap thickness between the droplets approaches zero. However, when the droplets are
close together, the series solution generated from the method of reflections becomes a poor
description of droplet interaction effects, due to very low convergence characteristics. In the
present work, our objective is to obtain an exact solution to the quasisteady problem of
thermocapillary motion of two fluid droplets along their line of centers in the absence of gravity.
The droplets may be formed from different fluids and have unequal radii, and the undisturbed
temperature gradient is constant over length scales comparable to their center-to-center spacing.
The steady-state energy and momentum equations applicable to the system are solved by using the
bipolar coordinates and the streamlines for various cases are presented. Our numerical results for
the droplet velocities compare favorably with the formulas derived analytically from the method
of reflections for the cases of large to moderate particle separations. It is found that the effect of
droplet interactions can be severely underestimated by the method of reflections when the droplets
are almost in contact.

ANALYSIS

We consider the thermocapillary migration of two spherical droplets of different fluids along their
line of centers in a third infinite fluid medium. All of the fluids are assumed to be Newtonian and
incompressible. A linear temperature field T, (x) with a uniform thermal gradient E e, (equal to
VT,,)is prescribed in the fluid far away from the pair of droplets; e, is a unit vector in the cylindrical
polar coordinate system (p, ¢, z). The droplets may differ in radius and in physical properties, but
are assumed to maintain their spherical shape. Our purpose here is to determine the correction to
[1] for one droplet due to the presence of the other in the temperature and flow fields.

For convenience in satisfying the boundary conditions at droplet interfaces, an orthogonal
curvilinear coordinate system (i, {, ¢), known as spherical bipolar coordinates (shown in figure 1),
is utilized to solve this problem. This coordinate system is related to cylindrical polar coordinates
by the following relation in any meridian plane ¢ = const (Morse & Feshbach 1953; Happel &
Brenner 1983):

¢ siny

p= cosh & —cos ¥ [2a]

and
¢ sinh ¢
I=———
cosh & —cos ¥
where ¢ is a characteristic length in the bipolar coordinate system which is >0. The coordinate
surfaces & = const correspond to a family of non-intersecting spheres whose centers lie along the
z-axis. Two spheres external to each other are chosen to be ¢ = ¢, (with £, > 0) and ¢ = &, (with

&, <0), and the sphere radii ¢, and a, as well as the distances of their centers from the origin d,
and d, are given by

[2b]

a,= c cosech|¢| [3]
and
d,= c coth|¢], 4]

for i = 1 or 2. The center-to-center distance between the particles, r,,, equals (d; + ;).



AXISYMMETRIC THERMOCAPILLARY MOTION OF TWO FLUID DROPLETS 517

z

&y

E“ gz

Figure 1. Geometric sketch for the motioﬁ of two spheres.

To determine the migration velocities of the two droplets, it is necessary to ascertain the
temperature and velocity distributions.

Temperature distribution

When the migration velocities of the two droplets are not identical, the transport of momentum
and energy is inherently unsteady. However, the problem can be considered quasisteady if Péclet
and Reynolds numbers are small. The eénergy equation governing the temperature distribution T'(x)
for external fluid of constant thermal conductivity k is Laplace’s equation:

VT =0. [5a]
For the two droplets, one has
VT,=0, i=1or2, [5b]

where T (x) and T,(x) are the temperature fields inside droplets 1 and 2, respectively. The boundary
conditions require that the temperature and the normal component of heat flux be continuous at
the droplet interface and that the temperature field far away from the droplets approach the
undisturbed values. Thus,

&=¢&: T=T, [6a]
or oT,
(p*+2)P>00: T-T,=E,z, [6¢]

for i =1 or 2; k, and k, are the thermal conductivities of the mtemal ﬁulds which are assumed
to be independent of temperature.
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A general solution to the Laplace equation [5a] suitable for satisfying these boundary conditions
is (Morse & Feshbach 1953)

T =cE,(cosh & —p)'? Y [A,cosh(n +3)¢ + B, sinh(n + DE)P, (1) + E, 2, [7a]
n=0
where P, is the Legendre polynomial of order » and for brevity we have put x4 = cos . Boundary
condition [6c] is immediately satisfied by a solution of this form. Because the temperature is finite
for any position in the interior of each droplet, the solution to [5b] can be expressed as

T,=cE.,(cosh & —u)" Y. C,expl— (1 + DIE[IP, () + E..z. (7]
n=>0

for i =1 or 2. The coefficients 4,, B,, C;, and C,, in [7a,b] are to be determined using [6a,b].
Utilizing the expansion, which can be derived using the generating function of the Legendre
polynomials,

cosh & sinh? &

(cosh & —p)'? (cosh & — )™ \/—ZCXP[ (n +3)[¢]]
x [cosh & — (2n + 1)sinh|¢|]1P, () (8]

and the recurrence relations of the Legendre polynomials, one can apply the boundary conditions
[6a,b] at the droplet interfaces to the general solution [7a,b] to yield four algebraic recursion
formulas, as shown in table 1. In table 1, k}* = k;/k is the ratio of thermal conductivity between
the internal and surrounding fluid. The four formulas represent a group of infinite coupled
equations for the unknown coefficients 4,, B,, C,, and C,,. Because these coefficients should
individually approach zero as n — oo for the temperature field [7a,b] to remain bounded, they can
be determined by solving the first m sets of the four recursion equations, provided that m is
sufficiently large that all 4,,,,, B, ., Cim+y and Cy,, ) are negligible.

Fluid velocity distribution

With knowledge of the solution for the temperature field, we can now proceed to find the fluid
velocity distribution. Due to the low Reynolds numbers encountered in thermocapillary motions,
the fluid velocity inside and outside the droplets is governed by the quasisteady fourth-order
differential equation for viscous axisymmetric flows:

E*W =0, [9a)
E‘Y,. =0, i=1or2, [9b]
where ¥, and ¥ are the Stokes stream functions for the flow inside droplet i and for the

external flow, respectively. The operator E? assumes the following form in spherical bipolar
coordinates:

_ 2 ¢
E? 55@-52——“{66 [(coshg ) ag]“l -1 [(coshz - “)5]}' [10]

c

Table 1. Recursion formulas for the evaluation of the coefficients in [7a, b] (both formulas are valid
fori=1or2)

Cyuexpl = (n + D|&) = 4, cosh(n +1)¢, + B, sinh(n + )¢,

n+ l)[sinh(n +3)¢+ E~k" cosh(n +%)€.:|A,,+, + (1 + Dfcosh(n + D& + k¥ sinh(n +3)|E|1B, 1

e
- {(1 — k*)sinh & cosh(n + 1) + [sinh(n +3)+ 1«5—‘ k¥ cosh(n + %)f,] (2n + 1)cosh 5}/1,,
~{(1 — k¥)sinh ¢ sinh(n + D&, + [cosh(n + })& + k¥ sinh(n + 1) £1(2n + 1)cosh &} B,

+ n[smh(n - 2)5 + é |

=2./2(1 — k})[cosh & — (2n + D)sinh |¢|lexpl— (7 + ) |&]]

k* cosh(n — z){,.]A,,_l + nfcosh(n — )&+ k¥ sinh(n — )| &|18,
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The stream function ¥ (or ¥,) is related to the velocity field v (or v;) by
(cosh { —cosy) dv
b= cZsiny EM

[11a]

and
(cosh ¢ —cosy)* 0¥
=— -—. 11b
o cisiny  0C (116]
The interfacial tension is temperature dependent, so the tangential stress discontinuity at the
droplet interfaces is

f=t Vi=(—m)-Vy=21v,T, (12
oT
where 7, is the interfacial tension for the surface of droplet i, m is the unit normal vector at the
droplet surface pointing into the surrounding fluid and | is the unit tensor. Note that dy,/dT is
assumed constant on the scale of radius of droplet i, and V, T can be determined from [7a,b). The
boundary conditions for the velocity fields are:

E=¢; v=yv, [13a]

e (v-U)=0, [13b]

(I —ecedes(z — 7)) = —V,y, [13c]

(p?*+zH)"—>00: v—0, [13d}

for i =1 or 2. Here, 7 (=1[(Vv + (V¥)T]) and 7, are viscous stress tensors for the external flow and
the flow inside droplet i, respectively; e; is a unit vector in bipolar coordinates; and U, (=U.e,)
and U, (=U,e,) are the instantaneous thermocapillary velocities of the two droplets to be
determined.

Because the droplets are freely suspended in the surrounding fluid, the net force exerted by the
fluid on the surface of each droplet must vanish:

F=IJ n-IdS =0, [14]
droplet

interface

where Il is the total stress tensor. For the axisymmetric motion considered in this work, one can
evaluate U, and U, by merely satisfying constraint [14] after solving [9a,b] and [13a—d].

A general solution of [9a,b] satisfying boundary condition [13d] and the requirement of finite
velocity in the interior of each droplet is (Stimson & Jeffery 1926; Happel & Brenner 1983)

¥ = c¥(cosh & — p)~ 2 i [a, cosh(n — D¢ + b, sinh(n — })¢E

+ ¢, cosh(n + D¢ + d, sinh(n + DEIG 3 (u) [15a)
and

¥, = c*(cosh & — p)~>" Z {ewexp[—(n — D|E[1 +fu exp[—(n +1)|<§|]}G..~3’|2 (15b]

for i=1 or 2. G;1(u) is the Gegenbauer polynomial of order n + 1 and degree —1/2, which is

related to Legendre polynomials by -

n — —~P n

Gty = 2= Leen (), fe
The coefficients a,, b,, c,, d,, e, and f,, are to be determined from boundary conditions given

by {13a—c] using the recurrence relations of the Legendre polynomials as well as expansions derived

from the generating function of the Legendre polynomials. The procedure is straightforward but

tedious and the results, which consist of eight algebraic recursion formulas, are listed in table 2.

In table 2, n* =n,/n is the ratio of viscosity between the internal and continuous fluid. Because
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Table 2. Recursion formulas for the evaluation of the coefficients in [15a,b] (all formulas are valid for i =1 or 2)
a,cosh(n — )¢, + b, sinh(n —~ H)¢, + ¢, cosh(n + )¢, + d, sinh(n + )¢,

/2

= -5 Un(n + l){

N

e, exp[—(n _%)Iél,] +fnexpl—(n +%)|é.|] = _-2_ Un(n + 1){

2n —1 2n +3

expl—(n —D]e ] _expl—(n + Dle1]
2n —1 2n +3 4

expl~(n ~)|&]]  exp[—(n +%)|€i|]}

"é'l {0 = Dewexpl—(1 = DIE[1+ (1 +3)f, expl—(n +3)

&l
= (n — 1)[a, sinh(n — )¢, + b, cosh(n — HYE] + (n + ), sinh(n + 3)¢, + d, cosh(n +2)¢,]
—cosh &{(n —1)*a, cosh(n — )¢, + b, sinh(n — H)E] + (n +3)?[c, cosh(n + )¢, + d, sinh(n + ]}

(n+1iyn . oy, (n+3yn
g, cosh(n + D6+ by Sith(n + D6+ 2 ey coshln + D6, dy sinhin + D]
(n =3 +1) ) n+ 5 + 1
+422',T[a,,_ , cosh(n — )¢, + b, sinh(n ~3)E] +(v—227)—£1—)[c,,ﬁ ycosh(n + )¢, + d, _, sinh(n +1)&]

— 1 sinh &{(n —1)a, sinh(n — $)E + b, cosh(n — e} + (1 +2)[c, sinh(n +3)¢, + d, cosh(n + )&}

—'l,-*[ —cosh &{(n — 3 Ve, expl—(n — D &1+ (n + 1) expl—(n + DS}

(+12 + 33

O ool + DIEN+ G S enpl =+ 2]
) (n + 10 +1

@D et -+ O expl— 0+ D)

+1 sinh |&,{(n — De, expl—(n — )| &1+ (1 + 1), exp[— (n +%)Ifiil}}

2 exp[—(n — D& expl—(n +D]&]]
—T(n;“—l)U,-n(n+1)cosh§,{ - - 2n+32 }

oy, E
L MiExe \/5,,(,,+1)£{exp[—(n—%)léfﬂ—exl’[‘(” +)| &1}

T n ]

 Eyc{ n@n+1) n(n +1)

ﬁT{—m Cin—nyexpl — (n —%)| éri]'*’mcimu)exl)[—(" +%)|¢i|]
nn +1)(n +2)

+n(n + 1) cosh &,c,,exp[—(n + )| &]1 - Cins vy €XPL— (1 + D&

2n+3
_(n ~Dnn+1)

1 Citn — I)CXP[—(” _%)| ’f,“}

the unknown coefficients a,, b,, ¢,, d,, €1n» €x» /1. and f5, become small with large n, simultaneous
solution of these eight recursion equations for the first m sets yields 8m coefficients, thereby
determining the Stokes stream function for fluids according to [15a,b].

By integration of the stress vector on the outer side of the interface using the first part of [14],
the drag force opposing the thermocapillary motion of the droplet at & = ¢, is (Stimson & Jeffery
1926)

F = ——Zﬁnncz (a,+ b, + ¢, +d,); [17a]
n=1
and for the droplet at & =¢,,
F,= —Zﬁmpc Y (a,— b, +c,—d,). [17b]
n=1

Equivalent formulas expressed in terms of the coefficients for internal stream functions can be
obtained easily.

Droplet velocities
Since the net force acting on each droplet vanishes to fulfill the requirement of [14], we have

F,=0 and F,=0. [18a,b]
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To determine the instantaneous thermocapillary velocities U, and U, of the droplets, the above two
equations incorporated with [17a, b] must be solved. The result can be expressed as

U=M, UP+ MUY [19a]
and
Uy=MuUP + M, U?, [19b]

where UD and UY are the droplet velocities that would exist in the absence of the other and are
computed from [1]. The numerical results for the mobility coefficients M,,, M,,, M,, and M,, as
a function of n¥, k¥, n¥, k¥ ,a;/a, and the separation parameter 4, defined as (a, + q,)/r,,, have
been determined and are presented in the following section. Note that M, =M, =1 and
M, = M, =0 when the two droplets are separated by an infinite distance (i.e. 1 = 0).

RESULTS AND DISCUSSION

The coefficients of the temperature distribution [7a,b] and the stream function [15a,b] in the
present quasisteady problem have been calculated for various values of n¥, n¥, k¥, k¥, a,/a, and
A using a digital computer. For the case of a,/a; = 5.0 and A = 0.995, m equal to about 280 was
sufficiently large that the (m 4 1)th terms of these coefficients are negligible and an increase in m
does not alter the calculated values appreciably.

Streamlines

The distortion of the velocity field due to interactions between two fluid droplets in thermocap-
illary motion is illustrated graphically in figures 2-6. In each case, streamlines in a meridian plane

Figure 2. Streamlines for the systém #* = k¥ =93 =k# =1, Figure 3. Streamlines for the system n¥=kt=kt=1,
o[0T = 8y,(0T, ayfay=1.0 and A =05. ¥/c2UP: 1, n#=10,0y,/T = dy,/oT, aja,=10and A =0.5. /U
—0.01; 2, —0.03; 3, —0.06; 4, —0.09; 5, —0.12. 1, —0.0125; 2, —0.0375; 3, —0.05; 4, —0.075; 5, —0.125.
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are depicted. Figures 2-5 show the situation when the two spheres have identical radii and the
distance between the interfaces is equal to the sum of their radii. The streamlines for two identical
droplets with the same viscosity and thermal conductivity as the surrounding fluid are drawn in
figure 2. Similar to that for two equal-sized gas bubbles (Meyyappan et al. 1983), the contour
pattern shows equivalent local recirculations in the vicinity of each sphere and a global recirculation
pattern far away from the droplets. These balanced recirculations will be distorted if the two
droplets differ in viscosity, in thermal conductivity or in the variation of interfacial tension with
temperature, as shown in figures 3-5. It can be found that the spacing between streamlines in the
droplet with smaller viscosity, smaller thermal conductivity or more sensitive interfacial tension
variation with temperature is narrower and the local fluid recirculation is stronger than that for
the other droplet, which shows a larger migration velocity for the former droplet. These results
are consistent with the prediction of [1].

The situation of two spheres with unequal radii is illustrated in figure 6, which corresponds to
the case of a,/a, = 2.0 and 1 = 0.5. Again, as expected from [1}, the larger droplet migrates faster.
It is noted that the local recirculation in the vicinity of the larger droplet is substantial, whereas
it might disappear in the vicinity of the smaller droplet. As the radius ratio becomes large, the
velocity field is dominated by the large droplet, with the smaller droplet introducing only local
perturbations.

Mobility coefficients

The numerical results for the mobility coefficients M,, and M,,, defined by [19a,b], for the
case of two droplets of the same fluid with various values of n*, k*, a,/a, and A are presented in
tables 3-6. Note that M,, and M,, for the case of a,/a, = 0.5 are equal to M, and M, for the case
of a,/a, = 2.0, respectively. If both droplets are equal in radius, they will move at the same velocity
because M, = M,,, My, = M,, and U = U{". As expected, the results illustrate that the droplets’
interaction decreases rapidly, for all values of n*, k* and a,/a,, with an increase in the gap between
them (i.e. decreasing 1). However, the interaction between droplets can be very strong when the
surface-to-surface spacing gets close to zero. The effect of the interaction, in general, is far greater
on the smaller of the two droplets than on the larger one (M,, increases dramatically with increasing
a,/a,) for any given values of n*, k* and A. The larger droplet is hardly influenced by the presence
of the smaller one for cases of radius ratio >2.0, unless they are very close together.

Using a method of reflections, Anderson (1985) obtained the mobility coefficients for the coupled
thermocapillary motion of two droplets of the same fluid oriented arbitrarily with the temperature
gradient. For the axisymmetric motion considered here, his results give

_ 1—k*\/a,\’ [ [1—k*\*> 3/2+5n*\]|aia} s
Ma=1 2<2+k*)(r,2> +[4<2+k"‘) ”§<1+n*)] 5 Toln (20e]
and
NS (1—k*\ 9/ 1—k*\/2+3n*\]ala} s
M.z—(m) [2(2+k*) 2<3+2k*)(1+n* e, TOrw) [200]

The mobility coefficients M, and M), calculated from the above asymptotic solution, with the
O(r;;®) term neglected, are also listed in tables 3~5 for comparison. It can be found that the
asymptotic formulas [20a,b] from the method of reflections agree very well with the exact results
as long as the droplet surfaces are more than 2/3 of the sum of radii apart (i.e. A < 0.6). However,
accuracy begins to deteriorate, as expected, when the droplets are closed together (say, 4 = 0.8).
Formula [20b] always underestimates the droplets’ interaction.

Note that, as illustrated in table 3, both the exact and the asymptotic solutions predict the
following relation for the case of two gas bubbles (n* =0, k* = 0) with arbitrary radii:

M“+M12=l. [ZI]

For the thermocapillary motion of two bubbles of different sizes, the one with the smaller radius
(i.e. smaller velocity) is enhanced by the motion of the other, which is retarded at the same time
by the motion of the former one. In view of this, it is not surprising that if the bubbles are of equal
size (so UP = UY), both will move with exactly the velocity that would exist in the absence of one
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of the droplets for any value of A (Meyyappan et al. 1983; Anderson 1985). It should be noted that,
while there is no net interaction between the bubbles, there are certainly perturbations to the flow
field due to their proximity.

For the specific case of two identical liquid droplets with equal radii tables 4-6 give the relation
M,, + M, > 1, which indicates that each droplet moves faster than its undisturbed velocity U'®.
This enhancement in droplet velocity is similar to the observation when the driving force for droplet
motion is gravity (Rushton & Davies 1973, 1978). When the ratio of thermal conductivity between
the internal and surrounding fluid, £ *, becomes larger, M, decreases and M, + M, increases. On
the contrary, M,, increases and M|, + M, decreases if n* is increased. Note that, when the two
liquid droplets differ in size, the one with the larger radius (i.e. larger velocity) can be slowed down
to a speed less than its undisturbed value.

Numerical results of M,,, M,,, M,, and M, for a typical case of two droplets of different fluids
are given in table 7. again, the droplets’ interaction is stronger when they are closer together.
The effect of interaction is also greater on the small droplet than on the larger one. In general,
the droplet with the smaller velocity is speeded up by the motion of the other droplet.

For the motion of two spherical droplets on which a body force (e.g. a gravitational field) is
imposed along their line of centers, the exact results of the droplet velocities were developed using
bipolar coordinates by Rushton & Davies (1973, 1978). Although their theoretical analysis is

Table 7. The exact solution of the mobility coefficients M, M, M, and
M,, (defined by [19a,b]) for the thermocapillary motion of two droplets
%=1,k =1,nf=1,k} = 10)

a/a, 4 M, M, My My,
0.5 0.2 1.000441 0.000296 0.002368 0.999996
0.4 1.003322 0.002373 0.018807 0.999726
0.6 1.009394 0.008122 0.062602 0.996146
0.8 1.013750 0.021700 0.151325 0.967849
0.9 1.007501 0.039571 0.238062 0.904504
0.95 0.993362 0.062105 0.325634 0.814625
0.97 0.979825 0.080576 0.391364 0.740148
0.98 0.968168 0.095494 0.443134 0.680392
0.99 0.948075 0.119927 0.527346 0.583586
0.995 0.929514 0.141515 0.602040 0.499117
1.0 0.2 1.001495 0.000250 0.001000 0.999995
0.4 1.011647 0.008011 0.007779 0.999642
0.6 1.036258 0,027505 0.024815 0.995552
0.8 1.068409 0.073473 0.057857 0.969778
0.9 1.065309 0.129161 0.097629 0.922597
0.95 1.029117 0.190927 0.151366 0.863894
0.97 0.988153 0.237044 0.198864 0.818674
0.98 0.951028 0.272345 0.239094 0.783735
0.99 0.885213 0.327567 0.307878 0.728810
0.995 0.823475 0.374473 0.371044 0.682027
20 0.2 1.003552 0.002370 0.000294 0.999996
0.4 1.028179 0.018980 0.002191 0.999765
0.6 1.092469 0.064802 0.006473 0.997347
0.8 1.198824 0.166196 0.013329 0.984597
0.9 1.231839 0.272266 0.024742 0.964913
0.95 1.182584 0.374498 0.046660 0.942951
0.97 1.107672 0.444256 0.069164 0.926903
0.98 1.034573 0.495084 0.089457 0.914810
0.99 0.899464 0.571349 0.125712 0.896151
0.995 0.769470 0.633810 0.160078 0.880487
5.0 0.2 1.006943 0.004630 0.000036 0.999999
0.4 1.055485 0.037046 0.000261 0.999946
0.6 1.186399 0.125406 0.000651 0.999430
0.8 1.430383 0.304457 0.000783 0.997052
0.9 1.564555 0.455417 0.002112 0.992157
0.95 1.551447 0.576773 0.005764 0.991492
0.97 1.462447 0.648096 0.010413 0.989506
0.98 1.359027 0.696457 0.015082 0.988000
0.99 1.147966 0.764971 0.024203 0.985692

0.995 0.930806 0.818474 0.033520 0.983786
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legitimate, some typographical errors occur in their formulas for droplet interactions. The correct
mobility coefficients M,, and M,, for droplet movement in a gravitational field are also presented
in table 6 for comparison. Clearly, the interaction effect in thermocapillary motion is much weaker
(smaller in M,,) than for motion under gravity. This result is consistent with the predictions by
Meyyappan & Subramanian (1984) and Anderson (1985).

CONCLUSIONS

The thermocapillary motion of two fluid droplets along their line of centers has been examined
in this work. The temperature and velocity fields are solved using bipolar coordinates and the
droplet velocities are obtained for various values of the fluid properties, droplet sizes and separation
distance. It is found that the interaction between droplets can be very strong when their gap
thickness approaches zero. The asymptotic formula [20b] generated from the method of reflections
always gives too small an effect of droplet interactions, and the error can be significant when the
droplets are near contact. The influence of the interaction is far greater on the smaller of the two
droplets. The droplet with the smaller velocity is enhanced by the motion of the other, which can
be retarded simultaneously by the motion of the first droplet. For the special case of two identical
liquid droplets, both migrate with the same velocity, which is larger in magnitude than that which
would exist in the absence of one of the droplets. There is no interaction between two bubbles of
equal size. In general, the effect of droplet interactions on thermocapillary motion is much weaker
than that on the motion in a gravitational field.
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